Analysis Problem

Each test counts towards one half of the grade.

Notations

- \mathbb{Z}, \mathbb{R} denotes respectively the sets of relative integers, and real numbers; \mathbb{N} denotes the set of non negative integers, and \mathbb{N}^* the set of positive integers.

- [0, 1) denotes the set of real numbers $x \in \mathbb{R}$ such that $0 \le x < 1$. We let $C = [0, 1) \times [0, 1)$.

- Any vector $v \in \mathbb{R}^2$ writes uniquely $v = [v] + \{v\}$, where [v] is an element of \mathbb{Z}^2 and $\{v\} \in C$; [v] is called the **integer part** of v and $\{v\}$ the **fractional part** of v.

- $A \in M_2(\mathbb{Z})$ denotes a 2 × 2 matrix with integer entries.

- $T_A: C \to C$ is the map defined by $T_A(v) = \{Av\}.$

- For every $n \in \mathbb{N}$, we define T_A^n by induction: $T_A^0 = I$ and $T_A^n = T_A \circ T_A^{n-1}$ for n > 0.

- A subset $E \subset C$ is **dense** in C if any euclidean disc $D \subset C$ of positive radius contains a point of E.

Part I

I.1. Prove that if $A, B \in M_2(\mathbb{Z})$, then we have $T_{AB} = T_A \circ T_B$.

I.2. A **euclidean segment** of C is the intersection of C with a segment contained in an affine line of \mathbb{R}^2 . Prove that if $\det(A) = 0$, then the image of T_A is a finite union of euclidean segments.

I.3. A point $v \in C$ is called T_A -periodic if there exists $n \in \mathbb{N}^*$ such that $T_A^n v = v$. Prove that if $\det(A) \neq 0$, the set of periodic points of T_A is dense in C. Hint: Observe that for p a prime number not dividing $\det(A)$, the map T_A induces a bijection from $C \cap \frac{1}{p}\mathbb{Z}^2$ to itself.

Part II

In this part, we let

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right).$$

The T_A -orbit of a point $v \in C$ is the set of points of the form $T_A^n(v)$, where $n \in \mathbb{N}$. The goal of this part is to prove that there exists a point $v \in C$ whose T_A -orbit is dense in C.

II.1. Show that for every $w \in \mathbb{Z}^2$ different from the origin, $A^n(w)$ tends to infinity when n tends to infinity. Hint: Compute the eigenvalues of A and observe that the eigenvectors of A are irrational.

II.2. Let $f, g : \mathbb{R}^2 \to \mathbb{C}$ be continuous functions which are \mathbb{Z}^2 periodic, namely f(v + w) = f(v) and g(v + w) = g(v) for every $v \in \mathbb{R}^2$ and every $w \in \mathbb{Z}^2$. Show that f and g can be uniformly approximated by trigonometric polynomials of the form

$$P(v) = \sum_{w \in \mathbb{Z}^2} a_w \exp(2i\pi \ v \cdot w)$$

where a_w are complex numbers all of whose vanish but a finite number, and where $v \cdot w$ denotes the usual scalar product on \mathbb{R}^2 .

II.3. Deduce from II.1 and II.2 that the multiple integrals

$$\int_0^1 \int_0^1 f(x,y)g(A^n(x,y))dxdy$$

converge when n tends to infinity to the product

$$\left(\int_0^1\int_0^1 f(x,y)dxdy\right)\cdot\left(\int_0^1\int_0^1 g(x,y)dxdy\right).$$

II.4. Prove that for every euclidean disc of positive radius $D \subset C$, the set $\bigcup_{n \in \mathbb{N}} T_A^{-n}(D)$ is dense in C.

II.5. Prove that there exists a sequence $\{D_k\}_{k\in\mathbb{N}}$ of euclidean discs $D_k \subset C$ of positive radius such that every euclidean disc $D \subset C$ of positive radius contains one of the D_k 's.

II.6. Prove by induction that there is a sequence $\{E_k\}_{k\in\mathbb{N}}$ of closed euclidean discs $E_k \subset C$ of positive radius such that $E_{k+1} \subset E_k$ and such that for every k, there exists an integer n_k such that $T_A^{n_k}(E_k) \subset D_k$. II.7. Conclude.