Analysis Problem

Each test counts towards one half of the grade.

Notations

- \mathbb{Z}, \mathbb{R} denotes respectively the sets of relative integers, and real numbers; \mathbb{N} denotes the set of non negative integers, and \mathbb{N}^{*} the set of positive integers.
- $[0,1)$ denotes the set of real numbers $x \in \mathbb{R}$ such that $0 \leq x<1$. We let $C=[0,1) \times[0,1)$.
- Any vector $v \in \mathbb{R}^{2}$ writes uniquely $v=[v]+\{v\}$, where $[v]$ is an element of \mathbb{Z}^{2} and $\{v\} \in C ;[v]$ is called the integer part of v and $\{v\}$ the fractional part of v.
- $A \in M_{2}(\mathbb{Z})$ denotes a 2×2 matrix with integer entries.
- $T_{A}: C \rightarrow C$ is the map defined by $T_{A}(v)=\{A v\}$.
- For every $n \in \mathbb{N}$, we define T_{A}^{n} by induction: $T_{A}^{0}=I$ and $T_{A}^{n}=$ $T_{A} \circ T_{A}^{n-1}$ for $n>0$.
- A subset $E \subset C$ is dense in C if any euclidean disc $D \subset C$ of positive radius contains a point of E.

Part I

I.1. Prove that if $A, B \in M_{2}(\mathbb{Z})$, then we have $T_{A B}=T_{A} \circ T_{B}$.
I.2. A euclidean segment of C is the intersection of C with a segment contained in an affine line of \mathbb{R}^{2}. Prove that if $\operatorname{det}(A)=0$, then the image of T_{A} is a finite union of euclidean segments.
I.3. A point $v \in C$ is called T_{A}-periodic if there exists $n \in \mathbb{N}^{*}$ such that $T_{A}^{n} v=v$. Prove that if $\operatorname{det}(A) \neq 0$, the set of periodic points of T_{A} is dense in C. Hint: Observe that for p a prime number not dividing $\operatorname{det}(A)$, the map T_{A} induces a bijection from $C \cap \frac{1}{p} \mathbb{Z}^{2}$ to itself.

Part II

In this part, we let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

The T_{A}-orbit of a point $v \in C$ is the set of points of the form $T_{A}^{n}(v)$, where $n \in \mathbb{N}$. The goal of this part is to prove that there exists a point $v \in C$ whose T_{A}-orbit is dense in C.
II.1. Show that for every $w \in \mathbb{Z}^{2}$ different from the origin, $A^{n}(w)$ tends to infinity when n tends to infinity. Hint: Compute the eigenvalues of A and observe that the eigenvectors of A are irrational.
II.2. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be continuous functions which are \mathbb{Z}^{2} periodic, namely $f(v+w)=f(v)$ and $g(v+w)=g(v)$ for every $v \in \mathbb{R}^{2}$ and every $w \in \mathbb{Z}^{2}$. Show that f and g can be uniformly approximated by trigonometric polynomials of the form

$$
P(v)=\sum_{w \in \mathbb{Z}^{2}} a_{w} \exp (2 i \pi v \cdot w)
$$

where a_{w} are complex numbers all of whose vanish but a finite number, and where $v \cdot w$ denotes the usual scalar product on \mathbb{R}^{2}.
II.3. Deduce from II. 1 and II. 2 that the multiple integrals

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) g\left(A^{n}(x, y)\right) d x d y
$$

converge when n tends to infinity to the product

$$
\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right) \cdot\left(\int_{0}^{1} \int_{0}^{1} g(x, y) d x d y\right)
$$

II.4. Prove that for every euclidean disc of positive radius $D \subset C$, the set $\bigcup_{n \in \mathbb{N}} T_{A}^{-n}(D)$ is dense in C.
II.5. Prove that there exists a sequence $\left\{D_{k}\right\}_{k \in \mathbb{N}}$ of euclidean discs $D_{k} \subset C$ of positive radius such that every euclidean disc $D \subset C$ of positive radius contains one of the D_{k} 's.
II.6. Prove by induction that there is a sequence $\left\{E_{k}\right\}_{k \in \mathbb{N}}$ of closed euclidean discs $E_{k} \subset C$ of positive radius such that $E_{k+1} \subset E_{k}$ and such that for every k, there exists an integer n_{k} such that $T_{A}^{n_{k}}\left(E_{k}\right) \subset D_{k}$.
II.7. Conclude.

