
Analysis Problem

Each test counts towards one half of the grade.

Notations

- Z,R denotes respectively the sets of relative integers, and real num-
bers; N denotes the set of non negative integers, and N∗ the set of
positive integers.
- [0, 1) denotes the set of real numbers x ∈ R such that 0 ≤ x < 1. We
let C = [0, 1)× [0, 1).
- Any vector v ∈ R2 writes uniquely v = [v] + {v}, where [v] is an
element of Z2 and {v} ∈ C; [v] is called the integer part of v and {v}
the fractional part of v.
- A ∈M2(Z) denotes a 2× 2 matrix with integer entries.
- TA : C → C is the map defined by TA(v) = {Av}.
- For every n ∈ N, we define T n

A by induction: T 0
A = I and T n

A =
TA ◦ T n−1

A for n > 0.
- A subset E ⊂ C is dense in C if any euclidean disc D ⊂ C of positive
radius contains a point of E.

Part I

I.1. Prove that if A,B ∈M2(Z), then we have TAB = TA ◦ TB.
I.2. A euclidean segment of C is the intersection of C with a segment
contained in an affine line of R2. Prove that if det(A) = 0, then the
image of TA is a finite union of euclidean segments.
I.3. A point v ∈ C is called TA-periodic if there exists n ∈ N∗ such
that T n

Av = v. Prove that if det(A) 6= 0, the set of periodic points of
TA is dense in C. Hint: Observe that for p a prime number not dividing det(A),

the map TA induces a bijection from C ∩ 1
pZ

2 to itself.
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Part II

In this part, we let

A =

(
2 1
1 1

)
.

The TA-orbit of a point v ∈ C is the set of points of the form T n
A(v),

where n ∈ N. The goal of this part is to prove that there exists a point
v ∈ C whose TA-orbit is dense in C.

II.1. Show that for every w ∈ Z2 different from the origin, An(w) tends
to infinity when n tends to infinity. Hint: Compute the eigenvalues of A and

observe that the eigenvectors of A are irrational.

II.2. Let f, g : R2 → C be continuous functions which are Z2 periodic,
namely f(v + w) = f(v) and g(v + w) = g(v) for every v ∈ R2 and
every w ∈ Z2. Show that f and g can be uniformly approximated by
trigonometric polynomials of the form

P (v) =
∑
w∈Z2

aw exp(2iπ v · w)

where aw are complex numbers all of whose vanish but a finite number,
and where v · w denotes the usual scalar product on R2.
II.3. Deduce from II.1 and II.2 that the multiple integrals∫ 1

0

∫ 1

0

f(x, y)g(An(x, y))dxdy

converge when n tends to infinity to the product(∫ 1

0

∫ 1

0

f(x, y)dxdy

)
·
(∫ 1

0

∫ 1

0

g(x, y)dxdy

)
.

II.4. Prove that for every euclidean disc of positive radius D ⊂ C, the
set
⋃

n∈N T
−n
A (D) is dense in C.

II.5. Prove that there exists a sequence {Dk}k∈N of euclidean discs
Dk ⊂ C of positive radius such that every euclidean disc D ⊂ C of
positive radius contains one of the Dk’s.
II.6. Prove by induction that there is a sequence {Ek}k∈N of closed
euclidean discs Ek ⊂ C of positive radius such that Ek+1 ⊂ Ek and such
that for every k, there exists an integer nk such that T nk

A (Ek) ⊂ Dk.
II.7. Conclude.


